Biomarkers in NASH

Biomarkers are diagnostic tools that can predict disease progression for individual patients and/or identify those patients who are more likely to respond to a particular treatment.

Consequently, biomarkers have the potential to accurately inform treatment decisions and improve disease outcomes.

The prevalence of non-alcoholic steatohepatitis (NASH) has rapidly increased in recent years due to the rise in obesity. The current NASH diagnosis is achieved through a liver biopsy. Validated biomarkers are needed to assess disease activity and response to interventions in patients with NASH.

NASH

NASH is a liver disease characterized by fat deposits, inflammation and tissue damage. NASH occurs in obese people who drink little to no alcohol, and can even be diagnosed in children. As the disease progresses, the liver undergoes scarring and fibrosis which ultimately leads to cirrhosis and permanent organ damage and may eventually progress to hepatocellular carcinoma and liver failure. With the increasing prevalence of obesity and obesity-related disease, biomarkers and treatments for NASH are needed.

PRO-C3 as a Biomarker

PRO-C3 is a biomarker that detects the formation of type III collagen and can be measured with a blood test.

Other collagen biomarkers detect a specific type of collagen, but do not distinguish between newly formed and older collagen. PRO-C3 detects the synthesis of type III collagen which is anticipated to reflect the formation of new fibrotic tissue.

At present, there are no biomarkers for fibrosis available that can predict or determine a response to therapy. PRO-C3 has potential as both a prognostic marker for disease activity and outcome, and may also be able to identify patients with active disease.

PRO-C3 is one of many biomarkers under investigation at Bristol-Myers Squibb, and is being studied in collaboration with Nordic Bioscience who discovered this biomarker.

Learn more about our work in fibrosis by visiting: www.bms.com/researchers-and-partners/areas-of-focus.html